摘要
With the rising demand for long-term grid energy storage, there is an increasing need for sustainable alternatives to conventional lithium-ion batteries. Electrode materials composed of earth-abundant elements are appealing, yet their lithiated-state stability hampers direct battery applications. In this paper, we propose for the first time a concept of coassembling ultrathin lithium with both lithium-free cathodes and lithium-free anodes to build high-energy, long-lasting, safe, and low-cost batteries tailored for long-duration energy storage. As a proof-of-concept, we selected sulfurized polyacrylonitrile (SPAN) as the lithium-free cathode and graphite/silicon-carbon (Gra/SiC) as the lithium-free anode, both of which are earth abundant. This newly conceptualized configuration not only successfully prevents overprelithiation but also exhibits superior energy density (293 Wh kg-1 and 363 Wh kg-1, respectively), excellent cycle stability (1,800 cycles), and benefit of low cost and environmental sustainability. This approach fosters new opportunities for the development of lithium-free, earth-abundant electrode batteries, spurring the development of sustainable and recyclable grid energy storage systems.
源语言 | 英语 |
---|---|
页(从-至) | 2266-2274 |
页数 | 9 |
期刊 | Nano Letters |
卷 | 25 |
期 | 6 |
DOI | |
出版状态 | 已出版 - 12 2月 2025 |