Downsample-Based Improved Dense Point Cloud Registration Framework

Shuai Yang*, Chunlei Song, Yongqiang Han, Jiabin Chen, Zhengquan Piao, Zhenhao Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In LiDAR-based SLAM algorithms, the process of point cloud registration stands as a pivotal step. When the actual sensor is used to collect point cloud data, the quantity of points within the collected point cloud is frequently immense. Traditional point cloud registration algorithms cannot effectively and quickly handle the registration of dense point clouds. This paper presents a Downsample-based Improved Dense Point Cloud Registration Framework. On the basis of ensuring the registration accuracy, the registration of tens of millions of point clouds can be quickly realized, which saves a lot of time for the entire mapping process. After experimental verification, the algorithm can realize the registration of tens of millions of point clouds within 2 min, which provides a solution for the registration of dense point clouds.

源语言英语
主期刊名Advances in Guidance, Navigation and Control - Proceedings of 2024 International Conference on Guidance, Navigation and Control Volume 6
编辑Liang Yan, Haibin Duan, Yimin Deng
出版商Springer Science and Business Media Deutschland GmbH
354-365
页数12
ISBN(印刷版)9789819622191
DOI
出版状态已出版 - 2025
活动International Conference on Guidance, Navigation and Control, ICGNC 2024 - Changsha, 中国
期限: 9 8月 202411 8月 2024

出版系列

姓名Lecture Notes in Electrical Engineering
1342 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议International Conference on Guidance, Navigation and Control, ICGNC 2024
国家/地区中国
Changsha
时期9/08/2411/08/24

指纹

探究 'Downsample-Based Improved Dense Point Cloud Registration Framework' 的科研主题。它们共同构成独一无二的指纹。

引用此