Dual-Band HRRP Fusion Recognition via Wavelet Decomposition Embedded Autoencoder

Weijia Wang, Zhuchang Qi, Lue Wang, Wei Yang, Liang Zhang, Yanhua Wang*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

High-resolution range profile (HRRP) is a crucial technique for radar target recognition. Due to the coupling of azimuthal scattering information and aspect sensitivity, fine target recognition using HRRP remains challenging. One way to mitigate HRRP aspect sensitivity is through enhancing the dimensionality of radar information acquisition. Therefore, this paper proposes a Dual-Band HRRP Fusion Recognition Model via Wavelet Decomposition Embedded Autoencoder (DF-WD-AENet). The method we proposed mainly comprises two modules. Firstly, the autoencoder model based on wavelet decomposition (WD-AEM) achieves constraint on feature information, making it better suited for dual-band fusion. Next is the dual-band information fusion module (DFM), in which we achieved the interaction and fusion of feature information through convolutional block attention module (CBAM) and omni-dimensional dynamic convolution (ODConv), and used a fusion loss function to train the model. Experiment shows that the recognition rate of our method is 7.73% higher than that of single-band, proving the effectiveness of the proposed method.

源语言英语
主期刊名IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2024
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9798331515669
DOI
出版状态已出版 - 2024
活动2nd IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2024 - Zhuhai, 中国
期限: 22 11月 202424 11月 2024

出版系列

姓名IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2024

会议

会议2nd IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2024
国家/地区中国
Zhuhai
时期22/11/2424/11/24

指纹

探究 'Dual-Band HRRP Fusion Recognition via Wavelet Decomposition Embedded Autoencoder' 的科研主题。它们共同构成独一无二的指纹。

引用此