Effect of Graphene on the Mechanical Properties of Glycidyl Azide Polymer-Based Energetic Thermoplastic Elastomer

Teng Wang, Wenhao Liu, Cong Zhu, Tianqi Li, Yunjun Luo*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Energetic adhesives with excellent mechanical properties are of great significance for the development of solid propellant. In this paper, a small amount of graphene is used to enhance the mechanical properties of glycidyl azide polymer (GAP)-based energetic thermoplastic elastomer (GAP-ETPE), and an in-depth analysis of the graphene enhancement mechanism is conducted through the structural characterization of the composite elastomer. Scanning electron microscopy (SEM) reveals that the solvent-assisted ultrasonic dispersion method can fully disperse graphene in GAP-ETPE, taking advantage of its high specific surface area. Fourier Transform Infrared (FT-IR) and low-field Nuclear Magnetic Resonance (LF-NMR) analysis show that graphene can provide physical crosslinking sites, significantly increasing the crosslinking density of GAP-ETPE. Dynamic mechanical analysis (DMA) indicates that the increased crosslinking density caused by graphene will restrict the segmental motion of GAP-ETPE. Static tensile test result shows that the use of 0.1 wt% graphene can increase the tensile strength of GAP-ETPE from 7.0 to 7.8 MPa. This work provides a basis for the application of graphene in energetic adhesives.

源语言英语
文章编号e56670
期刊Journal of Applied Polymer Science
142
13
DOI
出版状态已出版 - 5 4月 2025

指纹

探究 'Effect of Graphene on the Mechanical Properties of Glycidyl Azide Polymer-Based Energetic Thermoplastic Elastomer' 的科研主题。它们共同构成独一无二的指纹。

引用此