From Coarse to Fine: A Matching and Alignment Framework for Unsupervised Cross-View Geo-Localization

Xueyi Wang, Lele Zhang, Zheng Fan, Yang Liu, Chen Chen, Fang Deng*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Cross-view geo-localization aims at determining the geographic location of a query image by matching the reference images. The matching pairs can be captured from diverse perspectives, such as those from satellites and drones. Most existing methods are supervised that require input of location-labeled images or matched and unmatched image pairs for training, resulting in high labor costs. Moreover, current unsupervised methods perform instances matching directly between different perspectives with dramatic discrepancies, resulting in poor performance. To address these issues, this paper proposes a novel matching and alignment framework from coarse instance-cluster level to fine intermediate instance level for unsupervised cross-view geo-localization. We first introduces cluster-based contrastive learning, assigning pseudo-labels to the instances and generate clusters within each view. Then we design a cross-view location alignment module that fully exploits the feature relationships between instances and clusters for intra- and inter-views. Finally, we design an intermediate state transition module that facilitates further alignment between views by constructing intermediate states and bringing both views closer to the intermediate domain simultaneously. Extensive experiments demonstrate that our method surpasses state-of-the-art unsupervised cross-view geo-localization methods and even achieves comparable performance to state-of-the-art supervised methods.

源语言英语
主期刊名Special Track on AI Alignment
编辑Toby Walsh, Julie Shah, Zico Kolter
出版商Association for the Advancement of Artificial Intelligence
8024-8032
页数9
版本8
ISBN(电子版)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOI
出版状态已出版 - 11 4月 2025
活动39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, 美国
期限: 25 2月 20254 3月 2025

出版系列

姓名Proceedings of the AAAI Conference on Artificial Intelligence
编号8
39
ISSN(印刷版)2159-5399
ISSN(电子版)2374-3468

会议

会议39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
国家/地区美国
Philadelphia
时期25/02/254/03/25

指纹

探究 'From Coarse to Fine: A Matching and Alignment Framework for Unsupervised Cross-View Geo-Localization' 的科研主题。它们共同构成独一无二的指纹。

引用此