摘要
Cross-view geo-localization aims at determining the geographic location of a query image by matching the reference images. The matching pairs can be captured from diverse perspectives, such as those from satellites and drones. Most existing methods are supervised that require input of location-labeled images or matched and unmatched image pairs for training, resulting in high labor costs. Moreover, current unsupervised methods perform instances matching directly between different perspectives with dramatic discrepancies, resulting in poor performance. To address these issues, this paper proposes a novel matching and alignment framework from coarse instance-cluster level to fine intermediate instance level for unsupervised cross-view geo-localization. We first introduces cluster-based contrastive learning, assigning pseudo-labels to the instances and generate clusters within each view. Then we design a cross-view location alignment module that fully exploits the feature relationships between instances and clusters for intra- and inter-views. Finally, we design an intermediate state transition module that facilitates further alignment between views by constructing intermediate states and bringing both views closer to the intermediate domain simultaneously. Extensive experiments demonstrate that our method surpasses state-of-the-art unsupervised cross-view geo-localization methods and even achieves comparable performance to state-of-the-art supervised methods.
源语言 | 英语 |
---|---|
主期刊名 | Special Track on AI Alignment |
编辑 | Toby Walsh, Julie Shah, Zico Kolter |
出版商 | Association for the Advancement of Artificial Intelligence |
页 | 8024-8032 |
页数 | 9 |
版本 | 8 |
ISBN(电子版) | 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978 |
DOI | |
出版状态 | 已出版 - 11 4月 2025 |
活动 | 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, 美国 期限: 25 2月 2025 → 4 3月 2025 |
出版系列
姓名 | Proceedings of the AAAI Conference on Artificial Intelligence |
---|---|
编号 | 8 |
卷 | 39 |
ISSN(印刷版) | 2159-5399 |
ISSN(电子版) | 2374-3468 |
会议
会议 | 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 |
---|---|
国家/地区 | 美国 |
市 | Philadelphia |
时期 | 25/02/25 → 4/03/25 |