KITS: Inductive Spatio-Temporal Kriging with Increment Training Strategy

Qianxiong Xu, Cheng Long*, Ziyue Li*, Sijie Ruan, Rui Zhao, Zhishuai Li

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Sensors are commonly deployed to perceive the environment. However, due to the high cost, sensors are usually sparsely deployed. Kriging is the tailored task to infer the unobserved nodes (without sensors) using the observed nodes (with sensors). The essence of kriging task is transferability. Recently, several inductive spatio-temporal kriging methods have been proposed based on graph neural networks, being trained based on a graph built on top of observed nodes via pretext tasks such as masking nodes out and reconstructing them. However, the graph in training is inevitably much sparser than the graph in inference that includes all the observed and unobserved nodes. The learned pattern cannot be well generalized for inference, denoted as graph gap. To address this issue, we first present a novel Increment training strategy: instead of masking nodes (and reconstructing them), we add virtual nodes into the training graph so as to mitigate the graph gap issue naturally. Nevertheless, the empty-shell virtual nodes without labels could have inferior features and lack supervision signals. To solve these issues, we pair each virtual node with its most similar observed node and fuse their features together; to enhance the supervision signal, we construct reliable pseudo labels for virtual nodes. As a result, the learned pattern of virtual nodes could be safely transferred to real unobserved nodes for reliable kriging. We name our new Kriging model with Increment Training Strategy as KITS. Extensive experiments demonstrate that KITS consistently outperforms existing methods by large margins, e.g., the improvement over MAE score could be as high as 18.33%.

源语言英语
主期刊名Special Track on AI Alignment
编辑Toby Walsh, Julie Shah, Zico Kolter
出版商Association for the Advancement of Artificial Intelligence
12945-12953
页数9
版本12
ISBN(电子版)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOI
出版状态已出版 - 11 4月 2025
活动39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, 美国
期限: 25 2月 20254 3月 2025

出版系列

姓名Proceedings of the AAAI Conference on Artificial Intelligence
编号12
39
ISSN(印刷版)2159-5399
ISSN(电子版)2374-3468

会议

会议39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
国家/地区美国
Philadelphia
时期25/02/254/03/25

指纹

探究 'KITS: Inductive Spatio-Temporal Kriging with Increment Training Strategy' 的科研主题。它们共同构成独一无二的指纹。

引用此