Silver-coated copper mesh: an effective oil–water separator with excellent fouling rejection property

Tianlong Yu*, Gendi Song, Wenjie Tian, Tingting Liu, Mengying Yan, Bei Wu*, Shixiang Lu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Superwetting materials play a crucial part in the fields of chemistry and materials science and draw increasing attention. Among the various applications, superwetting materials demonstrated up-and-coming potential in oil spill remediation. Herein, we report on the preparation of silver-coated copper mesh via a facile chemical deposition and annealing treatment approach that requires neither complex devices nor modification with toxic organic molecules. The resulting sample exhibited remarkable water repulsion (water contact angle of ~ 158° and sliding angle of ~ 1°) and oil affinity (oil contact angle of ~ 0°), contributing to superior separation ability toward various oil–water mixtures (hexane, toluene, benzene, chloroform, tetrachloromethane, kerosene, gasoline, diesel) or effectively cleaning up the floating or underwater oil spill. Moreover, the resulting silver-coated superhydrophobic/superoleophilic copper (Ag-coated SS Cu) mesh demonstrated great durability upon the water flow impact or the abrasion test and was able to continuously separate the toluene–water mixtures over 20 times with an efficiency over 97%. In addition, the sample readily prevented surface fouling via self-cleaning process and exhibited antibacterial ability toward Escherichia coli, Staphylococcus aureus, and Bacillus subtilis as witnessed by the corresponding bacteriostatic circle (11.38 ± 0.76 mm, 12.65 ± 0.68 mm, and 12.87 ± 0.72 mm, respectively) in the Petri dish.

源语言英语
页(从-至)1843-1856
页数14
期刊Journal of Coatings Technology and Research
21
5
DOI
出版状态已出版 - 9月 2024
已对外发布

指纹

探究 'Silver-coated copper mesh: an effective oil–water separator with excellent fouling rejection property' 的科研主题。它们共同构成独一无二的指纹。

引用此